Specific Heat

DIRECTIONS: Use $q = (m)(\Delta T)(Cp)$ to solve the following problems. Show all work and units.

- 1. A 15.75-g piece of iron absorbs 1086.75 joules of heat energy, and its temperature changes from 25°C to 175°C. Calculate the specific heat capacity of iron.
- 2. How many joules of heat are needed to raise the temperature of 10.0 g of aluminum from 22°C to 55°C, if the specific heat of aluminum is 0.90 J/g°C?
- 3. To what temperature will a 50.0 g piece of glass raise if it absorbs 5275 joules of heat and its specific heat capacity is 0.50 J/g°C? The initial temperature of the glass is 20.0°C.
- 4. Calculate the heat capacity of a piece of wood if 1500.0 g of the wood absorbs 6.75×10⁴ joules of heat, and its temperature changes from 32°C to 57°C.
- 5.100.0 mL of 4.0°C water is heated until its temperature is 37°C. If the specific heat of water is 4.18 J/g°C, calculate the amount of heat energy needed to cause this rise in temperature.
- 6.25.0 g of mercury is heated from 25°C to 155°C, and absorbs 455 joules of heat in the process. Calculate the specific heat capacity of mercury.
- 7. What is the specific heat capacity of silver metal if 55.00 g of the metal absorbs 47.3 **calories** of heat and the temperature rises 15.0°C?
- 8. If a sample of chloroform is initially at 25°C, what is its final temperature if 150.0 g of chloroform absorbs 1.0 **kilojoules** of heat, and the specific heat of chloroform is 0.96 J/g°C?
- 9. How much energy must be absorbed by 20.0 g of water to increase its temperature from 283.0 °C to 303.0 °C? (Cp of $H_2O = 4.184 \text{ J/g}$ °C)
- 10. When 15.0 g of steam drops in temperature from 275.0 °C to 250.0 °C, how much heat energy is released? (Cp of $H_2O = 4.184 \text{ J/g}$ °C)
- 11. How much energy is required to heat 120.0 g of water from 2.0 °C to 24.0 °C? (Cp of $H_2O = 4.184 \text{ J/g}$ °C)
- 12. How much heat (in J) is given out when 85.0 g of lead cools from 200.0 °C to 10.0 °C? (Cp of Pb = 0.129 J/g °C)
- 13. If it takes 41.72 joules to heat a piece of gold weighing 18.69 g from 10.0 °C to 27.0 °C, what is the specific heat of the gold?
- 14. A certain mass of water was heated with 41,840 Joules, raising its temperature from 22.0 °C to 28.5 °C. Find the mass of the water, in grams. (Cp of $H_2O = 4.184 \text{ J/g}$ °C)
- 15. How many joules of heat are needed to change 50.0 grams of ice at -15.0 °C to steam at 120.0 °C? (Cp of $H_2O = 4.184 \text{ J/g}$ °C)
- 16. Calculate the number of joules given off when 32.0 grams of steam cools from 110.0 °C to ice at -40.0 °C. (Cp of $H_2O = 4.184 \text{ J/g}$ °C)
- 17. The specific heat of ethanol is 2.46 J/g °C. Find the heat required to raise the temperature of 193 g of ethanol from 19°C to 35°C.
- 18. When a 120 g sample of aluminum (Al) absorbs 9612 J of energy, its temperature increases from 25°C to 115°C. Find the specific heat of aluminum.

Specific heat handout

$$Q = m C DT$$

= (10)(0.9)(33)

$$=(10)(0.9)(33)$$

 $\Rightarrow 0 = 297 J$.

$$Q = m C(T_2 - T_1)$$

$$(0.5)(72-20)$$

 $(0.5-27)$
 $(0.5-27)$

$$5275 = 2572 - 500$$

$$5775 = 2572$$

$$5775 = T2$$

$$25$$

6.75X10 = (c)(37500)

```
5) 100mL -> 100g water ST=37-4=33°C c=4.18J/gc q=?
   Q=mCDT
   \varphi = (100)(4.18)(33)
   → Q= 13794J.
           DT=155-25 = 130°C Q=455J C=?
6) m=259
     Q= mcDT
     455 = (25)(0)(130)
      455 = (c) (3250)
      455 = c = 0.14J/g·c
7) c=? m=559 Q=47.3 calories ( I calorie= 4.184 journes)
    DT=15°C
1st convert calones to joules!
  1 cal = 4.184 joules. 2 => 197.90J = Q
   47.3ca/= x joules
  Q=mc DI
 197.90 = (55)(c)(15)
  197.90 = (c)(825)
                 - c= 0.24 J/g·C
   197.90 = C
 8) T_=25C Tz=? m=150g Q=1KJ C=0.96J/g'C
   (St convert KJ -> J /KJ -> 1000 J
  Q=mCDT
  1000J = (150g)(0.96J/g·c)(T2-25)
  1000 = 144 (T2-25)
                             7 4600 = 14472
  1000 = 14472 - 3600
 1000 + 3600 = 144Ta
                                    T2=31.94°C
```

9)
$$Q = ?$$
 $m = 209$ $\Delta \Gamma = 303 - 283 = 20°C$ $C = 4.184J/g°C$
 $Q = (20)(4.184)(20)$
 $Q = (1673.6J$

10) $M = 15g$ $\Delta \Gamma = 250 - 275 = -25°C$ $Q = ?$ $C = 4.184J/g°C$
 $Q = MC \Delta T$
 $Q = (15)(4.184)(-25)$
 $Q = (15)(4.184)(-25)$

11) $Q = ?$ $M = 1809$ $\Delta T = 24 - 2 = 22°C$ $C = 4.184J/g°C$
 $Q = MC \Delta T$
 $Q = (15)(4.184)(-25)$
 $Q = MC \Delta T$
 $Q = MC \Delta T$
 $Q = (15)(4.184)(-190)$
 $Q = MC \Delta T$
 $Q = (15)(4.184)(-190)$
 $Q = MC \Delta T$
 $Q = (15)(4.184)(-190)$
 $Q = (15)(4.184)($

C=0.13131 J/g·c

41.72 = (c)(317.73)

41.72 =C

317.73

9=mCDT

9612 = (120)(c)(90)

9612=(()(16860)

→c=0.89J/g°C